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INTRODUCTION

Let £, be a non-empty open set in R”, 2 < Q, be an open subset of
Q,, which verifies suitable conditions. Let fel”(£2,)n BV(£,) (or
fel' (2, BV(£,)). In this paper we consider sequences of integral
operators T, f defined by

(T, /) s)= | K(n, s, 1) fl1) dt. (I

v

where K, (s, 1)=K(n,s, t) is a “kernel” belonging to special classes 4~
which are defined by suitable axioms. Particularly, we assume
T, fe W' 8), for every f € BV. The main theorems of this paper give con-
vergence properties of operators 7,/ with respect to certain variational
functionals. Given a continuous sublinear function #: R™ - Ry, we show
that the #-variations of T, [ converge to thc #-variation of f (here, by
& -variation we mean the measure studied in [23] for the case # (p)=|p|,
and in [21] for the general case). Moreover, since the Serrin variational
Integral 74[, f, 2], with the integrand ¢ =y/(p) of “area” type, is a
suitable # -variation of a (n+ 1)-dimensional vector measure, (see [211]),
we show (Theorem 2) that

I[y. T, 7. Q)= L[y, 1, Q] (I
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INTEGRAL OPERATORS 359

Then we point out some interesting consequences of this result. For
example, (II) implies convergence in length, and in area for the operators
T,f. Moreover, by using a result of [4], by (I1) we deduce also that
grad T, f — grad f in measure on 2, where grad f denotes the “essential”
gradient of f (see [23, 28]), that is, the “regular” part of derivative measure
of f€ BV. We want to mark out that for the special case of length and area
in the Cesari sense (see [15] and next developments [20, 30, 9-12, 6])
similar results have been proved by C. Vinti [31], using a different
approach. Finally, using a theorem of [5] we may obtain a “weighted”
extension of the previous results and so convergence in “weighted” length
and area (for these concepts see [9, 10, 5-71).

1. A Crass oF KERNELS

Let 2 < R™ be a non-empty open set, A(£2) be the Borel o-field of Q.
We shall denote by C*(R), 0 <k < + o, the class of all C*-functions with
compact support in 2, and by 2 the Lebesgue measure on 4(Q2). Let
F:R"™ - RJ be a sublinear, continuous function, that is # satisfies the
following conditions:

(i) #

(ii) .

(i) F(p)<C|pl, for every peR” (C is the Lipschitz constant
of #).

(p+q)<F(p)+F(q) p,geR”
Flap)=aF (p), aeR,/, peR”

We denote now by £ -(£2) the class of all functions K: NxQ xQ — R,
such that K(n, -, -} is A(Q)® #(2)-measurable, for each ne N and such
that the following conditions hold:

(k.1) For every neN the function (s, t)— K(n, s, 1) is separately
summable in € with respect to s and ¢ and there is a sequence {a,} such
that ¢, — 0 and

[ K(n,s,t)ds=1+a,, for every r1e8. (1)

v Q2

(k.2) For every neN, the function H,(s) = |K(n, s, ) 1o, 1s locally
A-summable on £.

(k.3) The integral operator

(TN =] Kous,o fyd feL™(2) 2)

Q

is “regularizing,” that is, T, f e W' () for every fe L (Q).
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(k.4) Forevery felL”(Q2)and ¢eC/(£2), we have

Iim ‘}p(\) T,/ \)ds:l(p(\)f(s ) ds. (3)

ot

(k.5) Forevery fe W' " (Q), we have

i

Flgrad T, f(s) < ‘ K(n, s, t)# (grad f(1)) dr. s-ac, seQ. (4)

Remarks. (a) 1f Q is bounded, condition (k.2) is an easy consequence
of (k.1). Indeed, for every compact S< Q we have

" 1K s, Mg, ds= i {' K(n, s,l)d!}ds
s lve )

vy

v

= ' {' K(n, s, 1) ds} dr<(1+a,) AQ).
vS
For further utilizations of (k.2} (or similar conditions) see [22].

(b) Condition (k.4) expresses an approximation property of the
operator 7T, f, which is satisfied by a large class of integral operators; for
example, convolution operators [ 14, 277, moment kernels [2, 18].

(c) Condition (k.5) 1s similar to that used by C. Vinti [31] with
F(p)=|p|, and connects the gradient of the “mean™ T, f with the “mean”

of the gradient of /. In the special case of convolution operators with
regular kernels this condition is always verified with #(p)=1pl.

In the following we shall consider, besides the class £ ;(£2), also the
class #%(Q) of functions K:NxQx - R} such that K(n, -, ) is
B(Q) R B(L2)-measurable for every ne N, and the following conditions
hold:

(k.1)" For every ne N, the function s - K(n, s, t) 1s summable on Q,
the function 1 — K(n, s, t) is L”(82) and (1) holds.

(k.3 The operator T, f defined on L'(£2) by (2) is regularizing, that
is, T, fe W"'(£2), for every fe L (Q).

(k4) For every fe L'(€2), (3) holds.
(k.5)" For every fe W'(Q), (4) holds.
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2. THE GOFFMAN-SERRIN INTEGRAL

We denote by .#7(L) the class of vector measures on H(£2),
w: A(2) — R™, such that |g| (£2) < + oo. A function f'e L () is said to be

BV(Q) if there is a (vector) measurc y,€.#"(£2) such that

Jodu = | (grad o) fdi (5)

for every p e C 7 (£2).

For properties of BV functions, see [ 15, 16, 23, 28, 197. We write also,
fe BV(Q).

If #:R™—> Ry is a sublinear continuous function, we associate to y, the
positive scalar measure (see [21])

N
FuEy=sup y F(u(E)), EcB(Q)

i=1

where the supremum is taken over all finite Borel partitions E=J E; of F.
This measure has many properties (see [21]). We point out the following
semicontinuity property (see [21, 37); we first premise a definition: a
sequence {u,}, < .4"(2) converges weakly to pe.#"(22) on Q, if

~ ~

lim J 1) d/ﬂ:J @ du, for every ¢e CT{Q).

= 4+

We shall denote such convergence by u/ — u[2]. Then it is proved that if
w -~ u[ 27, we have

lim Fu(G) = Fu(G), for every open G <= Q. (6)

n—

3. APPROXIMATION OF # i,

(I) Case fe L™(Q)

Let £, R™ be a non-empty open sct and let £2 be an open set such
that Qo< Q,, that is, Q<= @, and d..(Q, 0Q2,)=0>0, where d_.(x, y)=
max{|x,— y,|; i=1, .., n}. We shall assume that f e L™(2,) n BV(£,). For
every sufficiently small ¢ > 0, we define the “integral mean” f, of fon £, by
setting

fs)=2e) " fEyde se®, (7)

Q. 6)
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where

ni

O(s, ” (s,~¢,8,+&) s=1(s5),..,95,)€.

;=1

It is well known that f“e W !(Q) and moreover, /"€ L”(£2), since
feL”(Q). We have also (see [14, 27, 30]) /"> f in L} (Q) and
1 —>f(t) for every re L, where L, is the Lebesgue set of /, and so f* — f
a.e. [4] on Q. Finally

. : o Qs )
lgrad /*(s)] = (ZC)MJQ(H: 1AL ) (26)"
I
S gy Il (820) < 4 o0

Thus fe W'’ (82). We now prove some lemmas.

Lemma 1. Let F:R" >R, bhe a continuous sublinear function,
Ke A (Q), and fe L (8,).
Then we have

lim | oT,f"ds=| oT,fds. (8)
v

-0t Yo

Sor every ¢ e C%UQ).

Proof. We first prove that T, f"— T, f in L Q). ¢—>0. For every
sufficiently small ¢ >0, we have

(T, f)(s) = (T f)s)] < | K. s, o) | f2(0) = f(1)] d.
Now for every neN and se Q

Kin, s, 0) [/ = f(OI <2 /1, K(n, s, 1)

for each re Q2 and moreover K(n, s, 1) |f"(t)— f(t)] goes to O, for £¢—0.
Hence, by applying (k.1) and the dominated convergence theorem, we
deduce

lim | K(n,s. 1) 1£0)— /()] di =0,

=0V

for every se Q. ne N. But from the inequality

~

J,, K. 01/ =S 01dr <2071, 1K s e
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and (k.2), the assertion follows. So, if ¢ e C%). setting S =supp ¢, we
have

[ 10U 1T, 1) = (T, 1)) ds

~

<ol | WL, /) = (T, f)s) ds

v g

and so the lemma is proved.

Remark. We remark that in the previous lemma we have only used
properties (k.1) and (k.2), so it is not necessary that Ke 4 (Q).

For every Ke # ;(£2), let us define the following measures

~

ouE)=| grad(T,f)s)ds vi(E)=| erad(7,./*)(s) ds

where fe L7(Q,), Ee€ #(Q), 2 cc Q,.
Then we have the following:

LEmMa 2. Let Ke #,(Q), feL”"(Qy). Then a,, vi satisfy the proper-
ties:

(i) o,, vie.#d"(Q)

(i) v, —o,[2],
Jfor everv neN.

Proof. (1) 1s a direct consequence of (k.3). Thus we prove only (ii). For
fixed neN, o e C*(2), by (k.3) we have

@(s) dvi(s) = | o(s)grad T, f*)(s) ds

o o

~

=- l (grad @)} (sWT, [*)(s) ds.

As the components of grad ¢ are functions in C *(€2), applying Lemma 1,
we have

lim [ ¢ dvi,= [ (grad @)(T, f)(s) ds

E—=0v

:j o(grad T, f)(s) dszj ¢ do,.
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Remark. Let # be a continuous sublinear function on R”. Since the
measures ¢,, v, are absolutely continuous with respect to A, applying

Theorem 2 in [21] we have

FViE)=| Flgrad T, f*)ds,  Fo,E)=| F(grad T,f)ds,
i 1
for every Ee#4(Q). We are ready to prove the main theorem of this
section.

THEOREM . Let feL*(Qy)n BV(Q,) and let u, be the distributional
derivative of f. Let Q << Q, be an open set such that || (082)=0 (here 02
denotes the boundary of Q). Then, if Ke ¥ () we huave

lim J Fgrad T, 1) ds = 7 1, (). 9)

n - 2

Proof. We first prove that o,— i, [€2] In order to do that, let
peC () be fixed. We have

[0 do,=[ olerad T, 1) ds = — | (grad )(T, ) ds

By (k.4), taking into account of the fact that D, e C *(£2), we obtain

lim ‘ @ do,= —| (grad @) fds = | o du,,

n— 7 v v

that is, o, — u,[£2]. Now by the semicontinuity theorem in [3] we obtain

~

lim | F(grad T, [)ds> 7 (Q) (10)

n— o vV
Thus it is sufficient to prove that

lim J Flarad T, f) ds < F i, (Q). (11)

n— o VO

To this end, note that by Lemma 2, and by the semicontinuity property of
F u,, we have

& >0 YR v

lim J Flgrad T,f") ds = ' Flgrad T, 1) ds.
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Since f“e W' ™(Q), we can apply (k.5) in order to obtain, for each &> 0,

‘1 Flgrad T, ) ds

Y2

S J H K(n, s, t) #(grad f*) dt} ds
Q

v Qo

:J‘ F(grad 1) {J K(n, s, 1) ds} dt=(1+a,) |
Q

Q2 VL

F(grad f7) dt.
2

Now, setting Q“=1{},., Q(1, ¢), and by applying Theorem | in [21] we
have

j F(grad [*) di
Q

= ) F((2e) " ' du,(&)) dr

v YQ(re)

<

<]

{(28) d dfu,(é)} di
Y QL)

~

< J (26) ™ dtb dF (&) = F Q)
Q YL

Therefore,

| Flerad 7,17 ds< (1 +a,) Z i, (27),

Q
Thus, as |u,| (002) =0, we obtain, for ¢ -0,

(1+a,) Ful@)=(1+a,) Fu,(2)

> h_mf Flerad T,f)ds> | F(grad T, f) ds

e—=0YQ £2

Consequently, as » — oo, we obtain (11) and so (9).

(I1) Case fe L'(2)

Let 2, R™ be a non-empty open set and let 2 < Q, be an open set
such that Q= Q. Let fe L'(Q,)n BV(2,) and Ke ¥ %(Q). We shall
prove a result which is analogous to Theorem 1. The proof is based on the
following variant of Lemma 1, which, in this setting, gives a stronger result.
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LEmMA 1. Let F:R" > RS be a continuous sublinear function. If
Ke %), for cach ne N and fe L'(Q2,) it results

liTv W,/ =T,1, oy =0
Proof.  We have

0T,/ =T, e, sJAQ IK(n, -, OLS () = f(O) ] 0, dt

and by (1),

| K(n. -. t)[f"(r)af'(r)]H,_x,m:J K(n, s, 1) |[7(1)— f() ds
Q2

and hence

0T/ =T f e < (U +a,) | 1/ ()= f(0)] dr.
V62
Since fe L'(Q), we have | f*— |, 10 —0 (see, eg., [27]), and so the
assertion follows.

Now, by similar arguments, we prove:
THEOREM 1'.  Let Ke X% () and let f e L'(82,) ~ BV(L,); then we have

lim | #(grad T, () ds =7, (Q).
AR

n

where Q cc Q4 and |u,| (082)=0.

Remarks. (a) 1In the previous theorems, we may assume that the
regularization properties of the operators T, f, are verified only for
functions in BV(2,) L™ (2,) or [BV(82,)n L'(£2,)].

(b) The “integral means™ employed in the proofs of Theorems 1 and
1" may be replaced by “mollifiers” operators (see, ¢.g., [19]). Thus we may
assume that inequality (4) holds only for C* ~ W' functions. In this
case, we can replace (K.5) with the following condition (K.6). There exist
reN, {b,}, b, — 1, such that, for every fe C* n W' ™(), we have

Flgrad T, f)s)<b, J K(n+r, s, t) #(grad f(1)) dt.
(o]

We note that for the moment kernel, (K.6) is verified with r=1 and
b,=(n+1)/(n+2)
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4. APPLICATIONS

Let Q,< R™ be a non-empty open set. Let fe L'(Q,)n BV(£2,) and let
Q2 cc 2, be an open set. Then |, | (Q)< + = represents the total varia-
tion of f on Q. Suppose that #(p)=|p|, pe R™. In this case, Theorem [’
has an important geometric meaning: that is, the “means” T,/ of / con-
verge in variation to f; so, if £e #(£2) and ¢, is the characteristic function
of E, the number |u,,| (£2) is the perimeter of £ (see [17, 24, 30, 19]) and
if ¢,eBV(R,), E is said to be “Cacioppoli set.” Hence the previous
theorems provide convergence in perimeter of the means T, f of /. Similar
results, for #(p)=|p| and Q,=R"™, have been stated by C. Vinti in [31],
using a different approach. Our aim 1S now to prove a convergence
theorem for T,f with respect to the Serrin variational Integral [297,
with an integrand = y(p) which depends only on the gradient of /. Well,
let y:R” >R, be a convex function such that the limit y*(p)=
lim, .- af(p/t) exists and is finite. Then it is possible to define a con-
tinuous sublinear function %: R"*' — R, on putting

G(p. 1)=ny(p/t), 1>0;9(p, 0)=y*(p)

Let Q,=R” be a bounded open set, fel'(Q2,)nBV(2,) and put
H;= (g, A). Then mye.#""'(R,), by boundness of €,. Let us define for
every Ee #(Q,),

Vi, (E) = ST (E).

Moreover, we set ¢,=(0,, A), ¥, =(v), i) where o, and v{ are the
measures defined in Section 3. Finally, we denote by % %(£2), £ open set
with Q2 cc Q,, the class of all functions K: N x Q2 x Q — R that satisfy the
same properties of the class # "% (£2) with ¢ instead of #. We now prove
the following:

THEOREM 2. Let Q << Q be an open set such that |ji;| (62) =0, and let
Ke X ¥Q). If fe L'(2y)n BV(Q,), we have

lim J W(grad T, f) ds = Yiu, (Q) = G (Q). (12)

n— £ JO
Proof. Since v! —0,[2] we have also v_f,—\o—,,[Q], and so

lim | y(grad 7, /%) ds> | Y(grad T, ) ds. (13)

e—=0t Y0 v
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By (k.5)" with ¢ instead of .#. we have

| wigrad T, /") ds

Y2
< | “ K(n, s, r)y(grad _/"")dt}ds
Y62 v
= J Y(grad ) {' K(n, s, t) ds} dt=(1+a,) ‘ Y(grad f7) dt.
o J ) YO
Now,
| werad =] g (20 | du,»(c“)) di
0 Y0 YO

N

= | 4 ((2::) " | du, (&), ]) dt
v )

Y Qe

<J e ]

YO

dfé’ﬁ,(f)} dr <G (82°),

where Q"' =), , O(1. ¢).
As e =07, by |, (62)=0 and (13) we obtain

(1 +a,,)fqﬁ,.(9)>j Wigrad T, 1) ds,  neN.

Q

From this, as n — + oc, we obtain

mj’

n— x dy,

Ygrad T, /) ds <y, (). (14)

Finally, since 5, — i, (see Theorem 1), the assertion follows by semi-
continuity of ¥y,

Remark. The same remarks we have made after Theorem 1’ remain
valid also in this setting.

ExampLE 1. Let m=1, y(p)=/1+p°. If feL'(L,). the previous
theorem gives convergence in length for functions 7, f.

EXAMPLE 2. Let m=2, Y(p,q)=+/ 1 +p’+¢°, fe L'(2,). In this case
Theorem 2 gives convergence in area for functions T, f.

The following is an interesting consequence of Theorem 2 and Theorem
3.1in [4].
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COROLLARY 1. Under the assumptions of Theorem 2, if, moreover \ is
positive and strictly convex and verifies the property

Y*(p)=0<p=0, (%)

then it results

lim y*(grad T, f — grad f)=0,

H— +

in J-measure on §2 (here grad [ is the “essential gradient™ of ).

For example, if y: R* - R is the function y(p, g)=./1+p>+q°, by
Corollary 1 we deduce

¢ ‘ ¢,
— T, f(x, y) > == f(x )
ox ax

P A
(~ T, f(x, p)— (—f (x. v)

0 )

~

in A-measure on £ (here (¢/Cx)f, (¢/éy)f are the “essential” partial
derivatives of f).

5. INTRODUCTION OF A WEIGHT

Let Q,cR"™ be a non-empty open set, fe L'(Qy)n BV(R,), Qcc Q,
and u, be the derivative measure of f. Let v: #(2,) > R, be a (scalar)
measure such that

WE)=| gdi,  EeB(Q),
v E

where ge C°(2,) and 0 < 4 < g(s) < 4, for every se€ Q,. We now prove the
following

COROLLARY 2. Let feL'(Q,)nBV(Q,), QccQ,, |u,| (62)=0. Let
Ke 4%(Q), where F is a continuous sublinear functional such that
F(p)=0<>p=0. Then

lim J F(grad T, f) gls) ds = F i (Q),
Q

nos + o

where [i, B(82,) - R™ is the (vector) measure defined by

BE) = g(s)duls)  Ee#(2,).

v E
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Proof. The assertion easily follows by o,—u,, Theorem 1'. and
Theorem 2 of [5].

Remarks. (a) Corollary 2 implies a theorem of convergence in
weighted perimeter and variation (see [6, 9]) for the operators 7, f, fe L'
Clearly, a similar result holds for felL’. Moreover, with analogous
reasoning we may prove a weighted version of Theorem 2, by putting
ﬁ,-(E):ngE’;T,», Ec #(L,), and thus we obtain convergence in weighted
area and length for operators T, f.

(b) We note that all the results remain valid if the (1) of (k.1} 18
replaced by the more general assumption

~

K(n, s, t)ds=g,(1).

v

where g, is a sequence of non-negative functions such that

lim sup g, (r)=1.

nee 4+ U e 0

It 1s sufficient to put 1 +a, =sup,., g,(7) in the proofs.
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